Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
Rev. bras. cir. cardiovasc ; 38(1): 124-131, Jan.-Feb. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1423097

ABSTRACT

ABSTRACT Introduction: Knockdown of fat mass and obesity-associated gene (FTO) can induce N6-methyladenosine (m 6A) ribonucleic acid (RNA) methylation. The objective of this study was to explore the effect of m 6A RNA methylation on atherosclerotic vulnerable plaque by FTO knockdown. Methods: A total of 50 New Zealand white rabbits were randomly divided into pure high-fat group, sham operation group, vulnerable plaque group, empty load group, and FTO knockdown group (10 rabbits/group). Results: Flow cytometry showed that helper T (Th) cells in the FTO knockdown group accounted for a significantly higher proportion of lymphocytes than in the vulnerable plaque group and empty load group (P<0.05). Th cells were screened by cell flow. The level of m 6A RNA methylation in the FTO knockdown group was significantly higher than in the vulnerable plaque group and empty load group (P<0.05). The levels of total cholesterol, triglyceride, and low-density lipoprotein C were higher at the 12th week than at the 1st week, but the high-density lipoprotein C level was lower at the 12th week than at the 1st week. At the 12th week, the interleukin-7 level was significantly lower in the adeno-associated virus-9 (AVV9)-FTO short hairpin RNA group than in the control and AVV9-green fluorescent protein groups (P<0.001). Conclusion: After successfully establishing a vascular parkinsonism rabbit model, m 6A RNA methylation can decrease Th cells and vulnerable atherosclerotic plaques.

2.
Acta Pharmaceutica Sinica ; (12): 469-482, 2023.
Article in Chinese | WPRIM | ID: wpr-965609

ABSTRACT

Ribonucleic acid (RNA) medicines have strong therapeutic potential for numerous rare genetic illnesses and malignancies because of its exact programmability based on Watson-Crick base pairing principle and unique ability to regulate gene expression. However, RNA medicines still have limitations in many areas, including stability, half-life time, immunogenicity, organ selectivity, cellular uptake and endosomal escape efficiency despite their great therapeutic potentials. This review briefly introduced numerous RNA medications [mostly messenger RNA (mRNA), small interfering RNA (siRNA), microRNA (miRNA) and antisense oligonucleotide (ASO)] that have intrigued of researchers in recent years, as well as their action mechanism in vivo. A number of delivery techniques, such as chemical modification, ligands coupling and nanocarriers have been proposed. The manufacture and applications of lipid nanoparticle, polymer nanoparticle and exosomes were discussed in depth. The goal of this work is to give a theoretical foundation and design concepts for the development of effective and safe RNA delivery technology, as well as to facilitate RNA therapeutic clinical translation.

3.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 400-407, 2023.
Article in Chinese | WPRIM | ID: wpr-964440

ABSTRACT

Objective @#To investigate the effect of isoprene cysteine carboxymethyltransferase (ICMT) gene on the migration and invasion of salivary adenoid cystic cancer cells (SACC) and the related mechanism, to provide experimental evidence for molecular targeted therapy of SACC.@*Methods@# Adenoid cystic cancer cells SACC-LM and SACC-83 were cultured in vitro, and siRNA was transfected into human SACC-LM and SACC-83 cells (experimental group) by transient transfection of a liposome vector. A blank control group and negative control group were set up respectively (transfected NC-siRNA). qRT-PCR was peformed to measure the mRNA expression of ICMT and RhoA in each group after transfection and to determine the silencing efficiency. The expression of ICMT, membrane RhoA, total RhoA, matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and Rho associated with coiled helical binding protein kinase 1 (ROCK1) in each group was detected by Western blot. The proliferation abilityies of SACC cells was detected by CCK-8 assay. The migration and invasion ability of SACC cells were detected by comparing the relative healing area of cell scratch assay and the number of Transwell assay cells. @*Results@#After transfection of ICMT-siRNA into SACC-LM and SACC-83 cells, the expression of ICMT gene and protein in the experimental group was significantly decreased compared with the negative control group and blank control group (P<0.05), but there were no significant differences in the expression of RhoA gene and total protein among all groups (P>0.05). The expression of RhoA membrane proteins, ROCK1, MMP-2, MMP-9 in the experimental group was significantly decreased compared with that in the negative control group and blank control group (P<0.05). Cell proliferation ability was significantly decreased (P<0.05). The migration and invasion abilities were significantly decreased (P<0.05). @*Conclusion @#In vitro silencing of ICMT gene can effectively inhibit the migration and invasion of human SACC-LM and SACC-83 cells, and the mechanism may be related to RhoA-ROCK signaling pathway.

4.
Journal of Zhejiang University. Medical sciences ; (6): 1-11, 2023.
Article in English | WPRIM | ID: wpr-982057

ABSTRACT

RNA therapeutics inhibit the expression of specific proteins/RNAs by targeting complementary sequences of corresponding genes, or synthesize proteins encoded by the desired genes to treat genetic diseases. RNA-based therapeutics are categorized as oligonucleotide drugs (antisense oligonucleotides, small interfering RNA, RNA aptamers), and mRNA drugs. The antisense oligonucleotides and small interfering RNA for treatment of genetic diseases have been approved by the FDA in the United State, while RNA aptamers and mRNA drugs are still in clinical trials. Chemical modifications are applied to RNA drugs, such as pseudouridine modification of mRNA, to reduce immunogenicity and improve the efficacy. The secure and effective delivery systems like lipid-based nanoparticles, extracellular vesicles, and virus-like particles are under development to address stability, specificity, and safety issues of RNA drugs. This article provides an overview of the specific molecular mechanisms of 11 RNA drugs currently used for treating genetic diseases, and discusses the research progress of chemical modifications and delivery systems of RNA drugs.

5.
Journal of Zhejiang University. Medical sciences ; (6): 306-317, 2023.
Article in English | WPRIM | ID: wpr-982048

ABSTRACT

OBJECTIVES@#To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.@*METHODS@#siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.@*RESULTS@#Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).@*CONCLUSIONS@#The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.


Subject(s)
Animals , Female , Mice , Antioxidants/metabolism , Cholesterol/metabolism , Ethanol/pharmacology , Glutathione/pharmacology , Inflammation , Lipids/pharmacology , Liver , Malondialdehyde/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Reactive Oxygen Species/metabolism , RNA, Small Interfering/pharmacology , Superoxide Dismutase , Triglycerides/metabolism , Cytochrome P-450 CYP2E1/metabolism
6.
West China Journal of Stomatology ; (6): 269-275, 2023.
Article in English | WPRIM | ID: wpr-981123

ABSTRACT

OBJECTIVES@#This study aimed to clarify the effects of Foxp3 silencing on the expression of inflammatory cytokines in human periodontal ligament cells (hPDLFs) in an inflammatory environment and on cell proliferation and invasiveness, as well as to explore the role of Foxp3 gene in the development of periodontitis.@*METHODS@#An small interfering RNA (siRNA) construct specific for Foxp3 was transfected into hPDLFs. Foxp3 silencing efficiency was verified by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, and the siRNA with the optimum silencing effect of Foxp3 gene was screened. Using lipopolysaccharide to simulate an inflammatory environment in vitro, CCK-8 detected the effect of silencing Foxp3 on hPDLFs proliferation under inflammatory conditions. Wound-healing experiments and transwell assays were conducted to detect the effect of silencing Foxp3 on hPDLF migration under inflammatory conditions. The expression of the inflammatory cytokines interleukin (IL)-6 and IL-8 was detected by RT-PCR and Western blotting under inflammatory conditions.@*RESULTS@#After siRNA transfection, RT-PCR and Western blotting analyses showed that the expression of Foxp3 mRNA in the Foxp3-si3 group decreased significantly (t=21.03, P<0.000 1), and the protein expression of Foxp3 also decreased significantly (t=12.8, P<0.001). In the inflammatory environment, Foxp3 gene silencing had no significant effect on hPDLFs proliferation (P>0.05), and Foxp3 gene silencing promoted hPDLFs migration (P<0.05). Moreover, the expression of IL-6 and IL-8 increased (P<0.05).@*CONCLUSIONS@#In an inflammatory environment, Foxp3 gene silencing promoted hPDLFs migration but had no significant effect on hPDLFs proliferation. The expression of inflammatory factors expressed in hPDLFs increased after Foxp3 gene silencing, indicating that Foxp3 gene inhibited inflammation in periodontitis.


Subject(s)
Humans , Cell Proliferation/genetics , Cells, Cultured , Cytokines/metabolism , Fibroblasts/metabolism , Forkhead Transcription Factors/metabolism , Gene Silencing , Interleukin-6/metabolism , Interleukin-8/metabolism , Periodontal Ligament/metabolism , Periodontitis/metabolism , RNA, Small Interfering/metabolism , Transcription Factors/metabolism
7.
Acta Pharmaceutica Sinica ; (12): 826-833, 2023.
Article in Chinese | WPRIM | ID: wpr-978757

ABSTRACT

Nucleic acids, as a next generation of biotechnology drugs, not only can fundamentally treat diseases, but also own significant platform characteristics in view of technology and production. Therefore, nucleic acid-based drugs have broad clinical applications in biomedical fields. However, nucleic acids are degradable and unstable, and have very low intracellular delivery efficiency in vitro and in vivo, which greatly limits their applications. In recent years, ionizable lipid-based lipid nanoparticles have shown promising application potentials and have been successfully applied to COVID-19 (Coronavirus Disease 2019) vaccines in clinic. Lipid nanoparticles demonstrate high in vivo delivery efficiency and good safety profile due to their unique structural and physicochemical properties, which provides many possibilities for their clinical applications for nucleic acid delivery in the future. This review focused on the characteristics of nucleic acid drugs and their delivery barriers, and discussed the approved nucleic acid drugs to illustrate the key aspects of the success of their delivery carrier system. In addition, problems to be solved in the field were highlighted.

8.
Organ Transplantation ; (6): 514-2023.
Article in Chinese | WPRIM | ID: wpr-978493

ABSTRACT

Early diagnosis of acute rejection is of significance for the protection of renal allograft function. Pathological puncture biopsy is the gold standard for the diagnosis of acute rejection of renal allografts. Nevertheless, it may provoke multiple complications, such as bleeding, infection and renal parenchymal injury, which limit its widespread application. In recent years, the sensitivity of contrast-enhanced ultrasound in the diagnosis of acute rejection has been constantly improved. Ultrasound-targeted microbubble technique has further enhanced the diagnostic specificity of contrast-enhanced ultrasound, making it possible to replace pathological puncture biopsy. Besides, in the field of acute rejection treatment, microbubble ultrasonic cavitation may promote local delivery of immunosuppressants by inducing sonoporation and exhibit anti-rejection effect. In this article, the application of contrast-enhanced ultrasound in the diagnosis and treatment of acute rejection after kidney transplantation was reviewed, aiming to provide reference for widespread application of contrast-enhanced ultrasound in kidney transplantation.

9.
Acta Pharmaceutica Sinica ; (12): 2292-2299, 2023.
Article in Chinese | WPRIM | ID: wpr-999127

ABSTRACT

Small interfering RNA (siRNA) is the initiator of RNA interference and inhibits gene expression by targeted degradation of specific messenger RNA. siRNA-mediated gene regulation has high efficiency and specificity and exhibits great significance in the treatment of diseases. However, the naked or unmodified siRNA has poor stability, easy to degrade by nuclease, short half-life, and low intracellular delivery. As an emerging non-viral nucleic acid delivery system, ionizable lipid nanoparticles play an important role in improving the druggability of siRNA. At present, one siRNA drug based on ionizable lipid nanoparticles has been approved for the treatment of rare disease. This review introduces the research progress in ionizable lipid nanoparticles for siRNA delivery, focusing on the effect of each component of lipid nanoparticles on the efficiency of siRNA-mediated gene silencing, which provides new references for the studies on ionizable lipid nanocarriers for siRNA delivery.

10.
Chinese Journal of Perinatal Medicine ; (12): 305-314, 2023.
Article in Chinese | WPRIM | ID: wpr-995102

ABSTRACT

Objective:To investigate the molecular mechanism for regulation of trophoblast invasion by piR-3127964, which is differentially expressed in placental tissues of preeclamptic and healthy pregnant women.Methods:Placenta samples of healthy (control group, n=12) and preeclamptic pregnant (PE group, n=10) women who delivered by caesarean section and chorionic villi specimens of patients undergoing artificial abortion were collected in the Department of Obstetrics of the First Affiliated Hospital of Chongqing Medical University during November 2020 to August 2021. Total RNA was extracted from placenta samples and sequenced and the expression of piR-3127964 in different tissues was determined by real-time quantitative-polymerase chain reaction (qRT-PCR). The expressions of PIWI proteins including PIWIL-1, PIWIL-2 and PIWIL-3 in different tissues were detected by Western blot. The expressions of two candidate targets, guanine nucleotide-binding protein-like 3-like (GNL3L) mRNA and sialophorin (SPN) mRNA were evaluated by qRT-PCR after exogenous treating HTR-8/SVneo cells with mimics, inhibitor or negative control of piR-3127964, respectively. qRT-PCR was also used to detect the relative expression of GNL3L and SPN at mRNA level in placentas of all women. The interactions between GNL3L/SPN and piR-3127964 were analyzed by double luciferase reporter gene detection. The localization of piR-3127964 and SPN in chorionic villi was detected by fluorescence in situ hybridization and immunofluorescence. Transwell assay was performed to analyze the influence of piR-3127964 on the invasion of HTR-8/SVneo cells and the possible mechanism. Independent sample t-test, analysis of variance, and LSD post test were used for analysis Results:(1) Enrichment pathways of candidate targets predicted by differentially expressed piR-3127964 were associated with cell motility. There were statistically significant differences in piR-3127964 expression in villi, healthy and preeclamptic placentas (2.950±0.853 vs 1.036±0.303 vs 0.254±0.155, F=27.35, P<0.05), and piR-3127964 was predominantly expressed in extravillous cytotrophoblasts (EVTs). (2) The expression of PIWIL-3 protein in placentas of preeclamptic patients was significantly lower than that in healthy placentas and villi (0.810±0.400 vs 3.175±0.429 and 6.843±1.379, F=49.36, P<0.05). (3) Compared with the control group, exogenous piR-3127964 mimics (piR-mimics) and inhibitors (piR-inhibitor) significantly affected the expression of SPN mRNA (0.971±0.045 vs 0.732±0.010, F=6.50; 1.076±0.073 vs 1.293±0.092, F=7.58; both P<0.05), while the expression of GNL3L mRNA had no significant correlation with piR-3127964 level. (4) The luciferase activity of wild-type SPN (SPN-WT) plasmids was significantly affected by piR-mimics (1.010±0.049 vs 0.645±0.047, t=9.34, P<0.05) and piR-inhibitor (1.035±0.058 vs 1.397±0.015, t=-10.60, P<0.05). (5) SPN mRNA was significantly upregulated in placentas of preeclamptic patients than in healthy placentas (2.097±0.239 vs 1.305±0.290, t=-4.22, P<0.05), but no significant difference in the expression of GNL3L mRNA was observed. Immunofluorescence experiment showed that SPN was expressed in EVTs. (6) The invasive potential of HTR8/SVneo cells treated with piR-inhibitor was significantly inhibited, but this effect could be reversed by SPN knockdown (160.714±53.860 vs 371.667±103.061 and 344.333±120.267, F=9.76, both P<0.05). Conclusions:piR-3127964 expression is abnormally downregulated in placentas of preeclamptic patients, resulting in inhibition of trophoblasts invasion through upregulation of SPN expression, which may be related to the pathogenesis of preeclampsia.

11.
Chinese Journal of Nephrology ; (12): 253-262, 2023.
Article in Chinese | WPRIM | ID: wpr-994972

ABSTRACT

Objective:To investigate the correlation between Piwi-interacting RNA (piRNA) and diabetic nephropathy (DN).Methods:The differential expression profiles of piRNAs in renal tissues of patients with DN (experimental group) and renal tissues adjacent to tumors of patients with renal tumors (control group) were detected by high-throughput sequencing. The biological function of differentially expressed piRNAs was described by gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis. Real-time fluorescence quantitative PCR was used to detect the serum expression level of target piRNAs in patients with DN. Spearman correlation analysis was used to analyze the correlation between serum target piRNAs and clinical indexes of patients with DN.Results:The results of high throughput sequencing showed that there were 127 differentially expressed piRNAs between DN group and control group, with screening condition of |log 2(fold changes)|≥2 and P<0.05. Among them, there were 99 up-regulated piRNAs and 28 down-regulated piRNAs. The top 5 up-regulated piRNAs were piRNA-hsa-161686, piRNA-hsa-349255, piRNA-hsa-355720, piRNA-hsa-151229 and piRNA-hsa-154959, respectively. The top 5 down-regulated piRNAs were piRNA-hsa-1929960, piRNA-hsa-174194, piRNA-hsa- 148658, piRNA-hsa-172594 and piRNA-hsa-172421, respectively. The PCR verification results of 3 up-regulated genes and 3 down-regulated genes with low P values and high expression levels showed that serum expression level of piRNA-hsa-77976 was significantly down-regulated in patients with DN ( P=0.028), which was consistent with that of sequencing, while the expression levels of other genes were inconsistent with the sequencing results or had no statistical significance. Bioinformatics analysis results predicted that significantly differentially expressed piRNAs might participate in the regulation of DN through Rap1, Ras, PI3K-Akt and axon guiding pathways. The results of correlation analysis showed that the expression level of piRNA-hsa-77976 was negatively correlated with blood urea nitrogen ( r=-0.584, P=0.028), serum creatinine ( r=-0.637, P=0.014), cystatin C ( r=-0.738, P=0.003) and β2 microglobulin ( r=-0.822, P<0.001), and positively correlated with estimated glomerular filtration rate ( r=0.661, P=0.010). Conclusion:The differential expression of piRNA is closely related to DN, and may be used as a new biomarker for the diagnosis and prognosis of DN.

12.
Chinese Journal of Nuclear Medicine and Molecular Imaging ; (6): 452-458, 2023.
Article in Chinese | WPRIM | ID: wpr-993617

ABSTRACT

Objective:To explore whether thyroxine (T 4) could promote differentiated thyroid cancer (DTC) progression by binding to integrin α vβ 3in vitro and its downstream mechanism. Methods:Papillary thyroid cancer cell lines TPC-1, K1 and follicular thyroid cancer (FTC) cell line FTC133 were cultured in vitro, and the expressions of integrin α vβ 3 in those 3 DTC cell lines were determined with immunofluorescence and flow cytometry analysis. After the treatment of T 4, tetraiodo thyroacetic acid (Tetrac) and Arg-Gly-Asp (RGD) peptide alone or in combination, the proliferation and metastatic potential of DTC cell lines were detected by cell counting kit-8 (CCK-8), Transwell migration and invasion assays. The small interfering RNA (siRNA) transfection was used to verify whether integrin α v or β 3 subunit knockdown could reverse the effect of T 4 on DTC cells. The expression levels of downstream signaling proteins phosphorylated extracellular signal-regulated kinase (p-ERK)1/2 and total extracellular signal-regulated kinase (ERK)1/2 were detected by Western blot. The effects of mitogen-activated protein kinase kinase (MEK)1/2 inhibitor (GSK1120212) on the proliferation, migration and invasion of T 4-treated cells were detected. One-way analysis of variance and Tukey test were used for data analysis. Results:The integrin α vβ 3 expressions in TPC-1, K1 and FTC133 cells were all positive, with the relative mean fluorescence intensity (MFI) of 61.93±18.61, 16.89±2.43 and 32.36±0.83, and the percentages of positive cells of (94.38±1.30)%, (74.11±3.87)% and (50.67±1.78)%, respectively ( F values: 13.36 and 217.30, P=0.006 and P<0.001). Compared with control group, the proliferation, migration and invasion in the three DTC cell lines treated with T 4 were significantly enhanced (96 h, F values: 62.67-297.50, q values: 13.15-20.73, all P<0.001). T 4-induced cell proliferation, migration and invasion were markedly reversed by Tetrac or RGD (96 h, q values: 8.61-17.54, all P<0.001). T 4-induced cell proliferation, migration and invasion were also significantly inhibited by the knockdown of integrin α v or β 3 subunit (72 h, F values: 7.75-70.98, q values: 4.77-15.21, all P<0.05). Western blot results showed that the phosphorylation levels of ERK1/2 in DTC cells were significantly increased by T 4 treatment, and the T 4-induced activation of ERK1/2 signaling pathway could be blocked by Tetrac, RGD, integrin α v or β 3 subunit knockdown. T 4-induced cell proliferation, migration and invasion were significantly reversed by GSK1120212 (96 h, F values: 47.53-151.40, q values: 10.32-16.65, all P<0.001). Conclusion:T 4 can promote cell proliferation and metastasis of DTC cells by binding to integrin α vβ 3 and activating the ERK1/2 pathway.

13.
Journal of Central South University(Medical Sciences) ; (12): 1646-1654, 2022.
Article in English | WPRIM | ID: wpr-971347

ABSTRACT

OBJECTIVES@#Glioma is the most common primary intracranial tumor and there is still no ideal treatment at present. Gene therapy, as one of the new methods for treating glioma, has attracted attention in recent years. But its application in treating glioma is very limited due to lack of effective delivery vectors. This study aims to investigate the feasibility of biomimetic nanomaterials made from glioma cells-derived extracellular vesicles (EV) for targeted delivery of signal transducers and activators of transcription 3 (STAT3)-small interfering RNA (siRNA) in treating glioma.@*METHODS@#First, U251 glioma cells-derived extracellular vessel (EVU251) was extracted by ultra-centrifugal method. Nanoparticle tracking analysis was used to characterize the particle size distribution, the transmission electron microscope was used to analyze the morphology, and Western blotting was used to verify the expression of srface characteristic protein. The homing ability was verified by cell uptake assay after labeling EVU251 with membrane dye kit PKH67; the EVU251 contents were removed by a low permeability method and then EVMU251 was prepared through a microporous membrane. Finally, the biomimetic nanomaterials EVMU251@STAT3-siRNA were prepared by loading STAT3-SiRNA with electro-dyeing method. The real-time quantitative PCR was used to quantify the successful encapsulation of siRNA, and the encapsulation and drug loading rate was calculated; then Cy5-labeled siRNA was used to evaluate the ability of biomimetic nanomaterials (EVMU251@CY5-siRNA) to target U251 cells. Lysosomal escape ability of the biomimetic nanomaterial was evaluated by lysosomal dye lyso-tracker green. At last, the ability of EVMU251@STAT3-siRNA to knock down STAT3 gene and selective killing of U251 cells was detected by cell experiments in vitro.@*RESULTS@#The size of EVU251 ranged from 50 nm to 200 nm with a natural disc shape. The expression of extracellular vesicle marker proteins could be detected on the membrane of EVU251. The cell uptake assay demonstrated that it had homing ability to target U251 cells. After EVU251 was prepared as EVMU251@STAT3-siRNA, the particle size was (177.9±5.0) nm, the siRNA loading rate was (33.5±2.2)% and the drug loading rate was (3.24±0.21)%. The biomimetic nanomaterial EVMU251@STAT3-siRNA still had the ability to target U251 cells and successfully deliver siRNA to the cytoplasm without lysosomal degradation. The EVMU251@STAT3-siRNA can effectively knock down the expression of STAT3 gene and produce selective killing ability in U251 cells.@*CONCLUSIONS@#The biomimetic nanomaterials EVMU251@STAT3-siRNA made from glioma U251 cells-derived extracellular vesicles can knock down STAT3 gene of U251 cells and produce selective killing effect, which can provide a new idea for the treatment of glioma.


Subject(s)
Humans , RNA, Small Interfering/genetics , Biomimetics , Cell Line, Tumor , Glioma/therapy , Nanostructures , Cell Proliferation , STAT3 Transcription Factor/metabolism
14.
Acta Pharmaceutica Sinica ; (12): 178-187, 2022.
Article in Chinese | WPRIM | ID: wpr-913162

ABSTRACT

Blocking immune checkpoint programmed cell death receptor 1 (PD-1) or programmed death receptor-ligand 1 (PD-L1) can enhance anti-tumor activity of effector T cells. However, the lack of response in many patients to PD-1/PD-L1 therapy remains a question. Improving the immunosuppressive tumor microenvironment (TME) to enhance the efficacy of immune checkpoint inhibitors has become a promising cancer treatment strategy. We constructed a liposome system (PD-L1/siCXCL12-Lp) of CXCL12 siRNA and anti-PD-L1 peptide with matrix metalloproteinases (MMPs) responsiveness, which combined the TME regulation of siCXCL12 and the immune regulation of anti-PD-L1 peptide. All animal experiments were approved by the Biomedical Ethics Committee of Peking University. The authors found that PD-L1/siCXCL12-Lp directly down-regulated the expression of CXCL12 in vitro (33.8%) and in vivo (15.5%). It also effectively increased the ratio of CD8+/Treg by 20.0%, which helped the anti-PD-L1 peptide to better exert its immune effect. The combination therapy significantly inhibited tumor growth (52.08%) with great safety, which explored a new idea for cancer immunotherapy.

15.
Chinese Journal of Nuclear Medicine and Molecular Imaging ; (6): 363-367, 2022.
Article in Chinese | WPRIM | ID: wpr-932939

ABSTRACT

Objective:To explore new methods of treating Graves′ disease (GD) by targeting thyroid stimulating hormone receptor (TSHR) and intercellular adhesion molecule-1 (ICAM-1).Methods:The small interfering RNA (siRNA) targeting TSHR and the ICAM-1 monoclonal antibody (mAb) were designed and synthesized. Thirty GD model mice were randomly divided into siRNA treatment group, ICAM-1 mAb treatment group, and untreated GD group (10 mice in each group), and 10 normal mice were taken as blank control. Serum thyroxine (T 4), thyroid stimulating hormone (TSH), TSH receptor-stimulating antibody (TSAb) and TSH-stimulation blocking antibody (TSBAb) were measured before and after treatment. At the end of the treatment, body mass and heart rate of mice in each group were measured, and thyroid uptake of 99Tc mO 4-, thyroid size and pathological changes were evaluated. Independent-sample t test, paired t test and one-way analysis of variance were used to analyze data. Results:After three treatments, the body mass of mice in siRNA group and ICAM-1 mAb group were significantly lower than that of normal mice ( F=3.50, P=0.025); the heart rates of the mice in two groups were significantly lower than that of untreated GD mice ( F=24.73, P<0.001). Heart rate of mice treated with siRNA decreased significantly, close to that of normal mice. After treatment, the serum T 4((27.58±1.94) vs (65.71±6.89) μg/L, (27.24±3.50) vs (70.84±8.46) μg/L), TSAb ((331.44±43.38) vs (457.33±45.85) mU/L, (275.16±45.80) vs (443.91±42.32) mU/L) and TSBAb ((13.94±1.11) vs (15.83±5.92) mU/L, (14.59±1.02) vs (17.05±6.16) mU/L) levels of mice in both siRNA group and ICAM-1 mAb group significantly decreased ( t values: 4.45-10.87, all P<0.05), while the serum TSH levels of mice in two groups significantly increased ((0.13±0.05) vs (0.04±0.05) mU/L, (1.46±0.34) vs (0.06±0.03) mU/L; t values: -2.22, -5.87, P values: 0.007, <0.001). The elevated TSH level and decreased TSAb level of mice treated with ICAM-1 mAb were significantly different from those treated with siRNA ( t values: 1.03, -1.63, P values: 0.002, 0.031). After treatment, the uptake of 99Tc mO 4- in part of the thyroid lobes of mice was decreased, and the enlargement degree of the corresponding lobes was reduced. The thyroid pathology of mice in the treated groups showed that the absorption vacuoles of thyroid follicles were reduced, and the phenomenon of thinner colloids was improved. No obvious damage was observed in the heart, liver and kidneys of the mice. Conclusions:Both the siRNA targeting TSHR and ICAM-1 mAb have therapeutic effects on GD model mice. The siRNA is better at controlling heart rate, and ICAM-1 mAb is better at increasing TSH and decreasing TSAb. Each of the above treatment methods is safe and effective, which can provide new ideas for GD targeted therapy.

16.
Chinese Journal of Experimental Ophthalmology ; (12): 499-506, 2022.
Article in Chinese | WPRIM | ID: wpr-931102

ABSTRACT

Objective:To explore the effect of knockdown of the homeobox gene paired-box 6 ( Pax6) on the biological behavior and epithelial-mesenchymal transition (EMT) of human lens epithelial cells (LECs). Methods:The SRA01/04 human LECs were divided into small interfering RNA-Pax6 (siRNA-Pax6) group transfected with siRNA-Pax6 and siRNA negative control (siRNA-NC) group transfected with disordered siRNA.Cell survival rate was detected by cell counting kit-8 method at 24, 48 and 72 hours after transfection.Cell cycle distribution and apoptosis were analyzed by flow cytometry at 48 hours after transfection.Migratory capability of cells was examined by cell scratch test at 24 hours after transfection.The mRNA relative expression levels of Pax6, α-crystallin A (CRYAA), α-crystallin B (CRYAB), Sox2, α-smooth muscle actin (α-SMA) and E-cadherin were detected by quantitative real-time PCR at 48 hours after transfection.The relative expression of Pax6 protein was detected by Western blot at 48 hours after transfection.Results:There was a significant difference in cell survival rates at different time points between the two groups ( Fgroup=4.776, P<0.05; Ftime=13.535, P<0.05). The cell survival rate of siRNA-Pax6 group was obviously lower than that of siRNA-NC group at 48 and 72 hours after transfection, and the differences were statistically significant (both at P<0.05). Compared with siRNA-NC group, the proportion of cells in G 0/G 1 phase was significantly increased and the proportion of cells in S phase was significantly reduced in siRNA-Pax6 group ( t=9.971, -5.063; both at P<0.05). The cell migration rate of siRNA-Pax6 group was (19.73±6.07)%, which was lower than (70.56±2.97)% of siRNA-NC group, showing a statistically significant difference ( t=-7.245, P<0.05). The relative expressions of Sox2 mRNA and α-SMA mRNA were lower, and the relative expression of E-cadherin mRNA was higher in siRNA-Pax6 group than siRNA-NC group, with statistically significant differences between them ( t=-23.254, -5.294, 6.062; all at P<0.01). The relative expression of CRYAA mRNA and CRYAB mRNA was significantly higher in siRNA-Pax6 group than siRNA-NC group, and the differences were statistically significant ( t=5.521, 8.270; both at P<0.01). The relative expressions of Pax6 mRNA and protein in siRNA-Pax6 group were 0.27±0.01 and 0.24±0.05, respectively, which were both lower than 1.00±0.05 and 1.14±0.10 in siRNA-NC group, showing statistically significant differences ( t=-14.456, -4.458; both at P<0.001). Conclusions:Silence of Pax6 can suppress the proliferation and EMT of human LECs and enhance the expression of crystallin.

17.
Chinese Journal of Experimental Ophthalmology ; (12): 316-325, 2022.
Article in Chinese | WPRIM | ID: wpr-931074

ABSTRACT

Objective:To investigate the role of integrin-linked kinase (ILK)-small interfering RNA (siRNA)-adeno-associated virus (AAV) in scar formation after glaucoma filtering surgery in rat eyes.Methods:Forty-eight Sprague Dawley rats of SPF grade, aged 8 to 9 weeks old, were selected and divided into blank control group, ILK-siRNA-AAV group, NC-siRNA-AAV group and mitomycin C (MMC) group by random number table method, with 12 rats in each group.Left eyes of the rats were taken as experimental eyes, and no intervention was administered to fellow eyes.The bulbar conjunctival filtering bleb after glaucoma filtration surgery in rats was established by anterior chamber drainage tube implantation.One day after operation, phosphate buffer solution, ILK-siRNA-AAV, and NC-siRNA-AAV were injected into the filtering bleb of blank control group, ILK-siRNA-AAV group and NC-siRNA-AAV group, 5 μl each group, respectively.Cotton tablets containing 0.4 mg/ml MMC were placed under conjunctival flap for 5 minutes during operation in MMC group.Intraocular pressure (IOP) was measured with a handheld tonometer before surgery and at 1, 2, 3, 7, 14, 21, 28 days after surgery.Formation of filtering blebs in rats was observed with a surgical microscope at 1, 2, 3, 7, 14, 21, 28 days after operation, and the bleb survival time was calculated by Kaplan-Meier survival analysis.The mRNA and protein expression levels of ILK in conjunctival and subconjunctival tissues at the surgical sites were detected by reverse transcription PCR and Western blot, respectively, on the 28th day after operation.Silencing of ILK gene was identified.Effect of ILK gene silencing on the morphology of drainage pathway was observed by hematoxylin-eosin staining.Effect of ILK gene silencing on collagen fiber deposition in the bulbar conjunctiva at filtration area was examined by Masson staining, and the percentage of positive area of collagen fiber staining in the total tissue visual field was calculated.The use and care of the animals complied with the ARVO Statement.This research protocol was approved by an Ethics Committee of Xi'an Jiaotong University (No.2013-772). Results:There were statistically significant differences in IOP at different time points between before and after surgery among four groups ( Fgroup=76.84, P<0.001; Ftime=114.49, P<0.001). The IOP of ILK-siRNA-AAV group on the 1st, 7th, 14th and 28th day after operation and the IOP of MMC group on the 2nd, 3rd, 7th, 14th and 28th day after operation were lower than those of blank control group, and the differences were statistically significant (all at P<0.05). The IOP of ILK-siRNA-AAV group was lower on 7th, 14th, 21st and 28th day after operation than those of NC-siRNA-AAV group, with statistically significant differences (all at P<0.05). The bleb survival time of blank control group, NC-siRNA-AAV group, ILK-siRNA-AAV group and MMC group was (3.50±1.51), (5.00±3.41), (31.50±3.15) and (31.33±2.46) days, respectively, with a significant difference among them ( F=395.83, P<0.05). The bleb survival time of ILK-siRNA-AAV group and MMC group was higher than that of blank control group and NC-siRNA-AAV group, and the differences were statistically significant (all at P<0.05). There were statistically significant differences in the relative expression levels of ILK mRNA and protein among four groups ( F=222.32, 752.69; both at P<0.05), and the relative expression levels of ILK mRNA and protein were significantly lower in ILK-siRNA-AAV group than blank control group and NC-siRNA-AAV group, and the differences were statistically significant (all at P<0.05). Proliferative fibrous connective tissue and a large number of cells at surgical sites were found in blank control group and NC-siRNA-AAV group, and the fibroblasts were of a high density and grew in clumps.In ILK-siRNA-AAV group, the bulbar conjunctiva was thin, and the arrangement of fibrous connective tissue was loose, and a few proliferative fibroblasts were found.In MMC group, the conjunctival fibrous layer was loose and thin, forming cavities, and scarce cells were found.There was statistically significant difference in the percentage of collagen fiber positive staining area among four groups ( F=741.66, P<0.05). The positive staining percentage of ILK-siRNA-AAV group and MMC group was significantly lower than that of blank control group, among which there was lower positive staining percentage in ILK-siRNA-AAV group than NC-siRNA-AAV group, and the differences were statistically significant (all at P<0.05). Conclusions:Silencing of ILK can inhibit the scar formation after glaucoma filtering surgery and maintain low IOP in rats.

18.
Chinese Journal of Nuclear Medicine and Molecular Imaging ; (6): 406-411, 2022.
Article in Chinese | WPRIM | ID: wpr-957153

ABSTRACT

Objective:Apt-A10-3.2 (aptamer of prostate specific membrane antigen (PSMA)) can be used as a specific ligand for early diagnosis and targeted treatment of prostate cancer. Mouse double minute 2 homolog (MDM2) is closely related to the malignancy of prostate cancer, and MDM2 small interfering RNA (siRNA) can silence MDM2 gene through RNA interference. To design a novel chimera of PSMA Apt-MDM2 siRNA and combine it with docetaxel (DTX) to explore a new diagnosis and treatment model combining targeted therapy of PSMA-positive prostate cancer with 99Tc m-chimera imaging monitoring. Methods:Apt-siRNA were obtained by covalent connection of PSMA Apt-A10-3.2 and MDM2 siRNA, which was combined with DTX to treat PSMA-positive prostate cancer cell lines (22RV1 and LNCaP). Cell lines were treated with Apt-siRNA alone or in combination with DTX. The levels of MDM2 and apoptosis-related proteins (B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), poly ADP-ribose polymerase (PARP), caspase-3) were detected by Western blot, which were used to evaluate the therapeutic effect. Fifteen BALB/c mice bearing 22RV1 xenografts were treated with PBS, DTX+ Apt-siRNA (200 pmol) and DTX+ Apt-siRNA (400 pmol), respectively. Tumor volume and MDM2 level were observed, and 99Tc m-Apt-siRNA SPECT imaging was performed to obtain the tumor/muscle (T/M) ratio. One-way analysis of variance, Tukey′s test and linear regression analysis were used for data analysis. Results:The levels of MDM2 protein were significantly decreased by Apt-siRNA (0.25±0.02, F=183.40, P<0.001; 0.56±0.03, F=37.15, P<0.001) in 22RV1 and LNCaP cells. After the treatment of Apt-siRNA+ DTX, the levels of Bcl-2 were significantly decreased, and the levels of Bax, PARP and caspase-3 were significantly increased. MDM2 protein level (400 pmol: 0.59±0.12; F=49.99, P=0.023) and tumor volume (400 pmol: (0.22±0.07) cm 3;F=71.30, P=0.039) were significantly inhibited by Apt-siRNA+ DTX in mice bearing 22RV1 xenografts. As for 99Tc m-Apt-siRNA SPECT imaging in vivo, T/M ratio of treatment group was significantly decreased (400 pmol: 2.07±0.22; F=34.99, P=0.022), and there was a linear regression relationship between T/M ratio and the expression level of MDM2 ( R2=0.875, P<0.001). Conclusion:Apt-siRNA combined with DTX can effectively inhibit the progression of prostate cancer, and realize visual targeted diagnosis and treatment of PSMA-positive prostate cancer by coupling radionuclide technetium.

19.
Journal of Clinical Hepatology ; (12): 1867-1872., 2021.
Article in Chinese | WPRIM | ID: wpr-886343

ABSTRACT

ObjectiveTo investigate the expression of the neutral cholesterol ester hydrolase 1 (NCEH1) gene in liver cancer tissue and human hepatoma cell lines and the effect of NCEH1 gene knockdown on the proliferation, apoptosis, invasion, and metastasis abilities of human hepatoma SMMC-7721 cells. MethodsLiver cancer tissue samples and adjacent tissue samples were collected from 32 patients with liver cancer who underwent surgical treatment in Guangzhou Red Cross Hospital Affiliated to Jinan University from January 2013 to June 2019, and quantitative real-time PCR was used to measure the relative expression level of the NCEH1 gene. Gene expression data of liver cancer samples up to September 2020 were downloaded from the ICGC database, and R software was used to analyze the data and obtain the expression level of the NCEH1 gene in each sample. The paired Wilcoxon signed-rank test and the Wilcoxon rank-sum test were used to investigate the differences between liver cancer tissue and adjacent tissue. Quantitative real-time PCR was used to measure the expression level of the NCEH1 gene in human hepatoma SMMC-7721, Bel-7402, HepG2, and Hep3B cells and normal human HL7702 liver cells. The lentivirus-mediated small interfering RNA (siRNA) technique was used to establish a human hepatoma SMMC-7721 cell line with NCEH1 gene knockdown, and the cells were divided into NCEH1 knockdown group (KD group) and negative control group (NC group); quantitative real-time PCR was used to measure the knockdown efficiency of the NCEH1 gene, and then MTT assay, flow cytometry with Annexin V-APC single staining, wound healing assay, Transwell assay, and Transwell chamber invasion assay were used to measure the proliferation, apoptosis, metastasis, and invasion abilities of SMMC-7721 cells in both groups. The t-test was used for statistical analysis of data between the two groups. ResultsThe mean expression level of the NCEH1 gene in liver cancer tissue was significantly higher than that in adjacent tissue (specimens from our hospital: Z=2.263, P=0.024; ICGC database: U=18 768, P<0.001). SMMC-7721 cell line with moderate potential of invasion and metastasis had the highest expression level of the NCEH1 gene, followed by BEL-7402 and HepG2 cell lines with low potential of invasion and metastasis, and Hep3B cell line without the potential of invasion and metastasis had the lowest expression level. The KD group had a significantly lower expression level of the NCEH1 gene than the NC group (t=11.578, P=0000 3), and the knockdown efficiency of the NCEH1 gene was as high as 74.0%. Compared with the NC group, the KD group had a significant reduction in cell growth rate, a significant increase in apoptosis rate, and significant reductions in migration rate and the number of metastatic and invasive cells (t=32.100, 27.303, 9.51, 38.123, and 22.331, all P<0.001). Conclusion There is a significant increase in the expression of the NCEH1 gene in liver cancer tissue and cell lines, and the NCEH1 gene can promote the growth, proliferation, invasion, and metastasis of hepatoma cells and inhibit their apoptosis, suggesting that it may be a potential therapeutic target for liver cancer.

20.
J Biosci ; 2020 Oct; : 1-10
Article | IMSEAR | ID: sea-214226

ABSTRACT

Post-transcriptional gene silencing (PTGS)-mediated gene silencing exploits the cellular mechanism whereintranscripts having sequence similarity to the double-stranded RNA (dsRNA) molecules present in the cell will besubjected to degradation. PTGS is closely related to natural processes such as RNA-mediated virus resistance andcross-protection in plants. Gene silencing and the cellular machinery for affecting this phenomenon might haveevolved as a natural protective measure against viral infection in plants. In PTGS, small interfering RNA (siRNA)molecules of 21–23 nucleotides length act as homology guides for triggering the systemic degradation of transcriptshomologous to the siRNA molecules. PTGS phenomenon, first discovered in transgenic petunia plants harbouringchalcone synthase gene and termed co-suppression, has been subsequently exploited to target specific gene transcripts for degradation leading to manifestation of desirable traits in crop plants. Targeted gene silencing has beenachieved either through the introduction of DNA constructs encoding dsRNA or antisense RNA or by deploying cosuppression constructs producing siRNAs against the transcript of interest. Understanding the mechanism of genesilencing has led to the development of several alternative strategies for inducing gene silencing in a precise andcontrolled way. This has paved the way for using PTGS as one ofthe chief functional genomicstools in plants and hashelped in unraveling the mechanism of many cellular processes and identifying the focal points in pathways, besides,opening new vistas in genetic engineering of plants for human benefits. PTGS has shown great potential in silencingthe deleterious genes efficiently so that value-added plant products could be obtained. Thus, PTGS has ushered in anew era in the genetic manipulation of plants for both applied and basic studies. In this review, we have outlined thebasics of RNAi-mediated gene silencing and summarized the work carried out at our institute using this approach, ascase studies. In particular, adopting RNAi-mediated gene silencing (a) as a method to restore fertility in transgenicmale sterile lines developed based on orfH522 gene from sunflower PET1-CMS source, (b) as a tool to suppress theproduction of toxic proteins, ricin and RCA, in castor, and (c) as an approach to induce bud necrosis virus resistancein sunflower has been discussed. Examples from other plant systems also have been mentioned to exemplify theconcept and utility of gene silencing in crop plants.

SELECTION OF CITATIONS
SEARCH DETAIL